Pero antes, debemos saber que es el número áureo;
"El número áureo es la relación o proporción que guardan entre sí dos segmentos de rectas"
Y estos son los 13 datos que seguro no conocías sobre 'el número más bello':
1) El número de oro (phi) o número áureo es un número irracional que se expresa con la siguiente fórmula:
2) La divina proporción o proporción áurea: es un concepto geométrico, que se da cuando al partir un segmento en dos partes desiguales, dividiendo el total por la parte más larga obtenemos el mismo resultado que al dividir la más larga entre la más corta.
3) La sucesión de Fibonacci: entra el en campo de la aritmética y está íntimamente relacionada con el número de oro. Se trata de una serie infinita de números naturales que empieza con un 0 y un 1 y continúa añadiendo números que son la suma de los dos anteriores, quedando con la forma siguiente:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1.597, 2.584, 4.181, 6.765, 10.946, 17.711, 28.657...
La relación de esta sucesión con el número de oro estriba en que al dividir cada número por el anterior de la serie se obtiene una cifra cada vez más cercana a 1,61803, quedando el resultado alternativamente por debajo y por encima del número preciso, sin llegar nunca a alcanzarlo absolutamente.4) Su descubrimiento se lo debemos, como tantas otras cosas, a los griegos. Ellos le dieron un tratamiento básicamente geométrico, y fue Euclides en su obra Elementos uno de los primeros que se refirió a este concepto.
5) Áureo, dorado, divino... A este número se le han dado muchos nombres, pero su símbolo lo hace inequívoco: es la letra griega phi, en honor al escultor griego Fidias, cuyas obras se consideraban lo más cercano a la perfección estética, igual que lo es la proporción áurea. El símbolo se lo adjudicó en el año 1900 el matemático Mark Barr.
6) Se ha estudiado mucho la sucesión de Fibonacci y el conocimiento sobre ella es amplio, pero no completo. De hecho, hay una conjetura aún sin demostrar: que la sucesión de Fibonacci contiene infinitos números primos. A día de hoy, nadie sabe si esto es verdadero o falso. Por si algún matemático entre los lectores se anima a buscar una respuesta…
7) Uno de los motivos por los que esta cifra lleva siglos fascinando a los que la estudian es que se encuentra de forma natural en los lugares más insospechados. Por ejemplo, la proporción entre abejas hembra y macho en una colmena suele ser similar a la proporción áurea.
8) Y ya que hablamos de abejas, éstas cumplen con otra regla, en esta ocasión relacionada con la sucesión de Fibonacci: los machos tienen un árbol genealógico que cumple con ésta. Un zángano (1) nace de un huevo no fecundado, de forma que solo tiene madre (1) y no padre. Su madre, al ser hembra, tuvo dos progenitores (2). Estos, macho y hembra tuvieron en total tres progenitores (3), la madre del macho y la madre y el padre de la hembra, es decir, dos hembras y un macho. Eso significa que tuvieron cinco progenitores a su vez (5)… A medida que ascendemos, la regla se sigue cumpliendo
9) También en el cuerpo humano podemos encontrarnos con la proporción áurea. Jasper Veguts, ginecólogo del Hospital Universitario de Lovaina, en Bélgica, asegura que se puede determinar si el útero de una paciente tiene un aspecto normal basándose en sus medidas: que al dividir su altura por su anchura, el resultado sea cercano a 1,618.
10) Se supone que es la representación ideal de la belleza, y sería, expresada sencillamente, la siguiente: la altura total debe ser igual a la distancia entre las puntas de los dedos teniendo los brazos y las manos totalmente abiertos. Esto equivale a ocho palmos, ocho veces la cara o seis veces los pies. En total, es la misma distancia que obtendríamos si multiplicásemos por 1,618 la distancia que separa nuestro ombligo del suelo.
11) Existe diversidad de opiniones sobre si una obra concreta de Leonardo da Vinci se creó siguiendo la proporción áurea o no. Se trata de El hombre ideal o el Hombre de Vitruvio. Se trata de la figura de un hombre relacionada con la geometría e inserto en un cuadrado y un círculo. Para la figura humana, siguió las recomendaciones de Vitruvio, el arquitecto de Julio César, pero Da Vinci dibujó las formas geométricas de forma que la razón entre el lado del cuadrado y el radio del círculo es áurea.
12) Dentro de los movimientos de arte vanguardista hubo toda una escuela dentro del cubismo dedicada a esta cuestión, llamada, cómo no, Sección Áurea o Sección de Oro. Se trataba de llevar las matemáticas a la pintura, sobre todo en las proporciones al descomponer una figura en cubos. Marcel Duchamp lideró esta tendencia, en la que también participó el español Juan Gris.
13) Las tarjetas de crédito que utilizamos a diario, las cajetillas de tabaco y hasta un simple folio son todos rectángulos áureos. Eso quiere decir que se dividimos su lado más largo por el más corto, la solución sería 1,618.
No hay comentarios:
Publicar un comentario